Hypercontractivity and comparison of moments of iterated maxima and minima of independent random variables

نویسندگان

  • Wenbo V. Li
  • Gideon Schechtman
  • Thomas Schlumprecht
  • Joel Zinn
چکیده

We provide necessary and sufficient conditions for hypercontractivity of the minima of nonnegative, i.i.d. random variables and of both the maxima of minima and the minima of maxima for such r.v.’s. It turns out that the idea of hypercontractivity for minima is closely related to small ball probabilities and Gaussian correlation inequalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ratio of Rice Random Variables

 The ratio of independent random variables arises in many applied problems. In this article, the distribution of the ratio X/Y is studied, when X and Y are independent Rice random variables. Ratios of such random variable have extensive applications in the analysis of noises of communication systems. The exact forms of probability density function (PDF), cumulative distribution function (CDF) a...

متن کامل

Distributions of the Ratios of Independent Kumaraswamy Variables and System Reliability Applications

‎In this article‎, ‎first of all‎, ‎the Kumaraswamy distribution is introduced‎. ‎Then‎, ‎the joint and marginal distributions of W = X1/X2 and T = X1/X1+X2 where X1 and X2 are independent Kumaraswamy random variables‎, ‎are obtained and the moments of these random variables are computed‎. ‎The distribution of random variables  W  and T  can be used in reliability studies and statistical models...

متن کامل

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.

متن کامل

Unclassified Ad Defense Documentation

\7e have investigated the fluctuations of sums of random variables X.., Xp, ... . We have generalized previous results on the random variables H connected with this sequence, obtained new results on the validity of the Arc-sine Law for independent not identically distributed random variables, obtained a generalization of Spitzer's identity, and obtained a generalization of the equivalence princ...

متن کامل

Self-normalized Processes: Exponential Inequalities, Moment Bounds and Iterated Logarithm Laws by Victor

Self-normalized processes arise naturally in statistical applications. Being unit free, they are not affected by scale changes. Moreover, selfnormalization often eliminates or weakens moment assumptions. In this paper we present several exponential and moment inequalities, particularly those related to laws of the iterated logarithm, for self-normalized random variables including martingales. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998